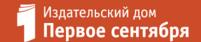


Работа с теоретическими конспектами по математике в старшей школе. Решение вероятностных задач

Основные вопросы

- Основные понятия, правила, формулы.
- Алгоритм решения вероятностной задачи.
- Классическое определение вероятности (формула).
- Геометрическая вероятность.
- Вероятностные задачи как текстовые на смеси и сплавы.
- Сумма и произведение вероятностей.
- Независимые события.
- Зависимые события.
- Формула Бернулли.
- Основные схемы решения задач.


Классическое определение вероятности

Всего n всевозможных исходов. Исходы 1, 2, ..., k ($k \le n$) благоприятствуют событию A.

Вероятность наступления события А:

$$p(A) = \frac{n(A)}{n}$$

Алгоритм решения

<u>Алгоритм</u>	<u>Решение</u>		
1. Назовём и сформулируем событие А	Событие А «Петя и Коля делают уборку»		
2. Определяем число всевозможных исходов п	$n = C_6^3 = \frac{6!}{3!(6-3)!} = 20$		
3. Находим число исходов, благо- приятствующих событию А: <i>п</i> (A)	n(A) = 4		
4. Вычислим вероятность по формуле: $p(A) = \frac{n(A)}{}$	$p(A) = \frac{4}{20} = 0.2$		
n	Ответ: 0,2.		

Задача 1.

В группе 6 человек, среди них Петя и Коля. Трое из группы делают уборку. Какова вероятность, что Петя и Коля делают уборку?

Геометрическая вероятность

Задача 2. В круг радиуса 4 вписан квадрат. Какова вероятность, что брошенная наудачу в круг точка не окажется в квадрате?

Решение. Площадь круга $S_{\kappa pyza} = 16\pi$. Площадь квадрата $S_{\kappa ea\partial pama} = \left(4\sqrt{2}\right)^2 = 32$ Тогда площадь частей круга вне квадрата $S = 16\pi - 32 = 16(\pi - 2)$. Это множество точек круга, благоприятствующих событию A «Точка круга, не попавшая в квадрат».

Попавшая в квадрат».
Искомая вероятность:
$$P = \frac{S}{S_{\kappa pyca}} = \frac{16(\pi - 2)}{16\pi}$$

Ответ: $\frac{\pi - 2}{\pi}$

Задачи, схожие с задачами на смеси и сплавы

Задача 3. Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 45% этих стекол, вторая — 55%. Первая фабрика выпускает 3% бракованных стекол, а вторая — 1%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.

Решение. Пусть x — число всех стекол в магазине, тогда 0,45х стекол — с 1-й фабрика, из них брак составляет $0,03 \cdot 0,45x$ стекол.

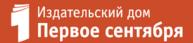
Со 2-й фабрики 0,55x стекол, брак — $0,01\cdot0,55x$ стекол.

Всего бракованных стекол: $0.03 \cdot 0.45x + 0.01 \cdot 0.55x$

Вероятность считаем по определению:

$$p(A) = \frac{n(A)}{n}$$
, $P = \frac{0.03 \cdot 0.45x + 0.01 \cdot 0.55}{x} = 0.019.$

Основные понятия


- Несовместные события
- Полная группа событий
- Достоверное событие
- Невозможное событие
- Противоположные события
- Независимые события
- Зависимые события

Формулы комбинаторики

$$C_{n}^{k} = \frac{n!}{k! \cdot (n-k)!} \qquad P_{n} = n!$$

$$A_{n}^{k} = \frac{n!}{(n-k)!} \qquad \overline{A}_{n}^{k} = n^{k}$$

$$\overline{C}_{n}^{k} = C_{n+k-1}^{k} = \frac{(n+k-1)!}{k! \cdot (n-1)!}$$

Сумма несовместных событий

<u>ЗАДАЧА 4</u>.

В пакете лежат конфеты: 7 конфет «Белочка», 8 конфет «Ромашка», и 5 конфет «Мишка"». Ваня, не глядя в пакет, берёт одну конфету. Какова вероятность, что Ване не попалась «Белочка»?

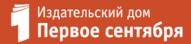
ЗАДАЧА 5.

Завтра ожидается дождь с вероятностью 0,4; будет целый день пасмурно (без дождя) с вероятностью 0,5. Но возможно, что завтра целый день будет солнечно. Какова вероятность, что завтра выглянет солнышко?

Произведение независимых событий задача 6.

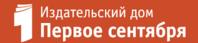
В магазине два платёжных автомата. Каждый из них может быть неисправен независимо от другого автомата с вероятностью 0,05. Найдите вероятность того, что хотя бы один автомат исправен.

Решение. Полная группа событий - 4 исхода:

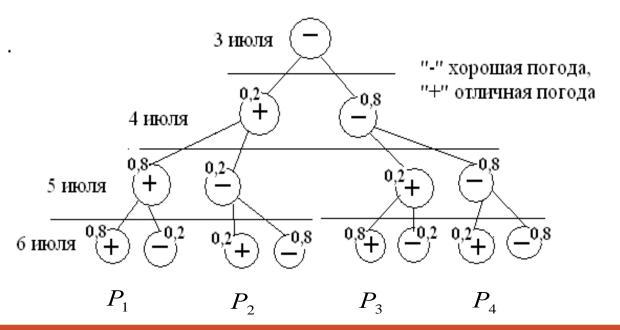

		Схема						
	1	авт	омат	2 автома				
1.	0	,95	+	+	0,95			
2.	0	,95	+	_	0,05			
3.	0	,05	-	+	0,95			
4.	0	,05	-	_	0,05			

1 способ: Вероятность события А: «хотя бы один автомат работает» равна сумме вероятностей элементарных событий 1,2 и 3

$$P(A) = 0.95 \cdot 0.95 + 0.05 \cdot 0.95 + 0.95 \cdot 0.05 = 0.9975.$$


2 способ. Используем полную группу событий:

$$P(A) = 1 - 0.05 \cdot 0.05 = 0.9975$$


Произведение независимых событий задача 7.

В волшебной стране бывает два типа погоды: хорошая и отличная, причём погода, установившись утром, держится неизменной весь день. Известно, что с вероятностью 0,8 погода завтра будет такой же, что и сегодня. Сегодня 3 июля погода в Волшебной стране хорошая. Найдите вероятность того, что 6 июля в Волшебной стране будет отличная погода.

«Дерево» всевозможных исходов

Вероятность события А: «6 июля отличная погода» вычислим по формуле суммы вероятностей.

$$P_{1} = 0.2 \cdot 0.8 \cdot 0.8$$

$$P_{2} = 0.2 \cdot 0.2 \cdot 0.2$$

$$P_{3} = 0.8 \cdot 0.2 \cdot 0.8$$

$$P_{4} = 0.8 \cdot 0.8 \cdot 0.2$$

$$P(A) = P_{1} + P_{2} + P_{3} + P_{4}$$

$$P(A) = 0.392$$

задачи с игральным кубиком

ЗАДАЧА 8. (Ларин, в. 256)

В случайном эксперименте игральный кубик бросают дважды. Найдите вероятность того, что разность выпавших очков будет меньше двух. Ответ округлите до сотых.

	1	2	3	4	5	6
1	0	1	2	3	4	5
2	1	0	1	2	3	4
3	2	1	0	1	2	3
4	3	2	1	0	1	
5	4	3	2	1	0	1
6	5	4	3	2	1	0

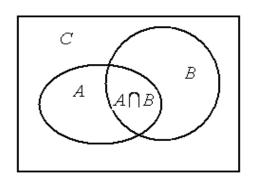
Решение.

Пусть событие А «разность выпавших очков меньше 2-х».

Составим таблицу всевозможных исходов - разностей выпавших очков.

Число ячеек с цифрами 0 и 1 (разность меньше двух).

n (A)=16. Вероятность события A равна:


$$P = \frac{16}{36} \approx 0,44$$

Вероятность зависимых событий

Задача 9.

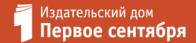
В торговом центре два автомата кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,3. Вероятность того, что кофе закончится в обоих автоматах, равна 0,12. Найдите вероятность того, что к концу дня кофе останется в обоих автоматах.

$$P(A+B) = P(A) + P(B) - P(AB)$$

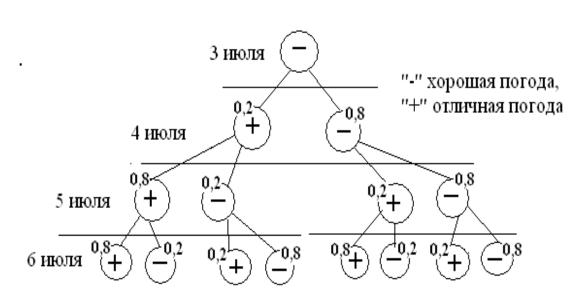
Вероятность зависимых событий

<u>Задача 10 (</u>Ларин, в. 285).

Профессор заборостроительного университета Аполлон Иванович подсчитал, что Сюзанна Зайцева отсутствует на его лекциях с вероятностью 0,7, а Виолетта Волкова — с вероятностью 0,8. Вероятность того, что обе девушки присутствуют на лекции равна 0,12. Какова вероятность, что на следующую лекцию не придёт ни Сюзанна, ни Виолетта?


Решение. Пусть Событие A — «Сюзанна не пришла на лекцию», событие B — «Виолетта не пришла на лекцию», тогда событие A+B — «хотя бы одной девушки нет на лекции (-+ или +- или - -)», событие AB — «обеих девушек нет на лекции (- -)». Очевидно, события A и B зависимые. Известно, что p(A) = 0,7; p(B) = 0,8. Тогда p(A+B) = 1 - 0,12 = 0,88. По формуле P(A+B) = P(A) + P(B) - P(AB) находим: P(AB) = 0,7 + 0,8 = 0,88 = 0,62. Ответ: 0,62.

Ответ: 0,62.


Вероятность зависимых событий

```
Решение задачи 10. Способ 1 (рассуждением). Пусть Событие А — «Сюзанна
пришла на лекцию», событие В — «Виолетта пришла на лекцию», тогда
событие A+B — «хотя бы одна девушка на лекции (-+ или +- или + +)», событие
AB – «обе девушки на лекции (+ +)». Очевидно, события A и B зависимые.
Из условия задачи: p(A)=1-0.7=0.3; p(B)=1-0.8=0.2; p(AB)=0.12.
Полная группа событий состоит из 4-х исходов (элементарных событий):
(С+, В+); (С+, В-); (С-, В+) и (С-, В-), причём р(АВ)=р(С+, В+)=0,12.
P(A) = p(C+, B+) + p(C+, B-)=0,3. Тогда p(C+,B-)=0,3-0,12=0,18.
                                                                     P(A+B)=P
P(B) = p(C+, B+) + p(C-, B+)=0,2. Тогда p(C-, B+) = 0,2-0,12=0,08.
Теперь вычислим искомую вероятность р(С-, В-).
p(C-, B-) = 1 - (0,12+0,08+0,18)=0,62.
```

1sept.ru

Вернёмся к «дереву»: бросание монеты

Задача 11. Симметрическую монету бросают 3 раза.

Найдите вероятность события:

- а) выпало ровно 2 орла.
- б) во 2-м броске выпала решка.
- в)выпало две решки подряд.

Формула Бернулли

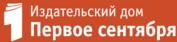
Пусть в опыте вероятность события A равна p, и опыт повторяется n раз, при этом каждый повторяемый опыт независим от остальных. Тогда в этом сложном опыте вероятность события A(k) — событие A произойдёт k раз (k < n) равна $P_n(A_k) = C_n^k p^k q^{n-k}$, где q = 1 - p.

<u>Задача 12.</u> Симметрическую монету бросают 8 раз. Найдите вероятность того, что выпадет ровно два орла.

Решение. По формуле Бернулли:

$$n$$
=8, k =2, p = q =0,5.

Ответ: 0,109375.


Задачи о стрельбе

Задача 13. Биатлонист делает по мишени 5 выстрелов. Вероятность попадания при одном выстреле — 0,8. Найдите вероятность того, что он:

- а) из пяти выстрелов попал в цель ровно 3 раза.
- б) из пяти выстрелов попал в цель не менее 3-х раз.
- в) первые три раза попал по мишени, а последние 2 раза промахнулся.
- Γ).....

Основные вопросы

- Основные понятия, правила, формулы.
- Алгоритм решения вероятностной задачи.
- Классическое определение вероятности (формула).
- Геометрическая вероятность.
- Вероятностные задачи как текстовые на смеси и сплавы.
- Сумма и произведение вероятностей.
- Независимые события.
- Зависимые события.
- Формула Бернулли.
- Основные схемы решения задач.

10-11 классы

Множества Выражения Функции и графики Уравнения и неравенства Основы тригонометрии Задачи с параметрами

Книга для учителя

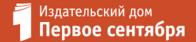
Часть 1

ИЛЕКСА

КНИЖЕЧКА

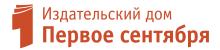
ДЛЯ РАЗВИТИЯ

МАТЕМАТИЧЕСКИХ


СПОСОБНОСТЕЙ

ИЛЕКСА

Unestal


ИЛЕКСА

ИЛЕКСА

Спасибо за внимание и сотрудничество.

Успехов в изучении и обучении!

Наши социальные сети

